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To explore the limitations of the mean-field approximation, frequently used in ab initio molecular electronics
calculations, we study an out-of-equilibrium Anderson impurity model in a scattering formalism. We find
regions in the parameter space where both magnetic and nonmagnetic solutions are stable. We also observe a
hysteresis in the nonequilibrium magnetization and current as a function of the applied bias voltage. The
mean-field method also predicts incorrectly local moment formation for large biases and a spin polarized
current, and unphysical kinks appear in various physical quantities. The mean-field approximation thus fails in
every region where it predicts local moment formation.
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The Anderson impurity model1 �AIM� has been the sub-
ject of great theoretical and experimental interest in the past
decades �for a review, see Ref. 2�. There is a number of
experimental systems including quantum dots, or single at-
oms and molecules contacted by leads, which provide ex-
perimental realizations of various versions of the AIM under
out-of-equilibrium conditions. These systems are not just
prototypes of out-of-equilibrium systems but a theoretical
understanding of them would be crucial for future molecular
electronics and mesoscopic applications.

Anderson constructed his famous model in Ref. 1 to de-
scribe local moment formation and solved it within the
mean-field �MF� approximation. Within this approximation,
he found a phase transition to a state where magnetic mo-
ments are formed. Further work revealed that, in reality,
quantum fluctuations of this local moment lead to the forma-
tion of a Kondo singlet between the impurity and conduction
electrons2 at low temperature, where the impurity spin is thus
completely screened. The spontaneous symmetry breaking
found by Anderson is thus an artifact of the mean-field ap-
proximation. Nevertheless, the MF treatment indicates
clearly the regions of strong correlations, and it can also
serve as a starting point for accurate approximations as in the
local moment approach3 or interpolative perturbation
theory4,5 �IPT�. The latter approach can easily be generalized
to nonequilibrium situations6,7 using the Keldysh formalism.8

In lack of more accurate methods, the mean-field approxi-
mation is also used in molecular electronics calculations,
where local density approximation or eventually the Hartree–
Fock equations are solved in a scattering state or in the
Keldysh approach to describe moment formation.9 However,
it is not clear at all how reliable these approximations are.
The purpose of this Brief Report is to shed some light on the
weaknesses of the nonequilibrium mean-field approach on
the simplest possible test case, the out-of-equilibrium Ander-
son model, and to show where usual ab initio calculations
should fail. Our conclusion is that the mean-field approach
fails qualitatively and quantitatively essentially everywhere
where it predicts local moment formation. Our study, which
is based on the scattering state formalism, is complementary
to the recent work of Komnik and Gogolin,10 who used

Green’s function formalism to study the mean-field equations
of the nonequilibrium Anderson model. As we shall see, in
the strongly correlated regions, several artifacts emerge such
as nonequilibrium driven spontaneous symmetry breaking as
well as multiple stable solutions which lead to the appear-
ance of hysteresis. These instabilities are probably also parts
of the reasons why nonequilibrium IPT suffers from all kinds
of instabilities. These instabilities were avoided in previous
works by applying spin-independent approximations11 or us-
ing an interpolative self-energy4 or both.12

The nonequilibrium AIM Hamiltonian consists of four
parts. The first part describes a single impurity level with
energy �d and an on-site Coulomb interaction �U�,

Hd = �
�=↑,↓

�dd�
†d� + Un↑n↓, �1�

where d�
† and d� are the creation and annihilation operators

of the impurity electrons corresponding to spin state � and
n�=d�

†d�. The second and third terms describe the left �L�
and right �R� leads which we model by tight-binding chains,

H� = �
k,�

�− 2t̃ cos k + ���ck��
† ck��. �2�

Here, �� �L ,R�, ck��
† and ck�� are the creation and annihila-

tion operators of a conduction electron of wave number
k� �0,�� in lead �, t̃ is the hopping along the leads, and ��

is the chemical potential of the left or the right lead. The
chemical potentials of the two leads are different due to a
finite bias voltage leading to a nonequilibrium situation. The
fourth part, Ht, describes the tunneling between the leads and
the impurity,

Ht = �
�

�d�
†�V−c−1� + V+c1�� + H.c.� . �3�

Here, V� are the hybridization matrix elements between the
impurity and the left and the right leads, and cl=�1� denote
the conduction electron annihilation operators on the sites
next to the impurity; sites along the left and right chains are
labeled by l= �−	 , . . . ,−1� and l= �1, . . . ,	�, respectively.
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For the sake of simplicity, here we study a symmetrical situ-
ation, V−=V+=V, but our conclusions are rather independent
of this assumption.

To study the Hamiltonian above, we used a mean-field
approximation and replaced the impurity term as

Hd → Hd
MF = �

�

��d + U�n−�	�d�
†d�. �4�

The nonequilibrium expectation value of the occupation
numbers �n�	 in Eq. �4� can be obtained by solving self-
consistent equations as will be discussed later. The expres-
sion �d+U�n−�	 can be regarded as an effective energy level
of spin-� electron. The hybridization between impurity and
conduction electrons gives rise to a finite lifetime for impu-
rity states, reflected in the broadening of the effective impu-
rity levels with a finite width, 
=2�V2 �0=V2 / t̃, where �0 is
the density of states �DOS� of the conduction electrons at the
Fermi level of the half-filled leads.

To evaluate the nonequilibrium expectation values, �n�	,
we shall use a scattering formalism. The annihilation opera-
tor of the left-coming scattering state of energy � and spin �
can be expressed as

c���� = �
l�0

cl�eikRl + ������
l�0

cl�e−ikRl + �����
l�0

cl�eik�Rl

+ �����d�. �5�

Here, cl� is the annihilation operator of the lth site and �����,
����, and ����� are the reflection, transmission, and dot
coefficients, respectively, which we obtain by solving the
corresponding Schrödinger equation. Since the energy
is conserved in course of the scattering process, the wave
numbers k and k� are connected by the dispersion relation
�=−2t̃ cos k+�L=−2t̃ cos k�+�R. Waves coming from the
right hand side can be constructed in a similar way. The
occupation numbers are then calculated from the dot coeffi-
cients, ����� and ������ corresponding to the states coming
from the left and the right, respectively,

�n�	 = �0

−	

	

d���������2fL��� + ��������2fR���� , �6�

where the DOS of leads is approximated by its value at
Fermi level and f����� f��−��� is the Fermi function.

In the large bandwidth approximation �t̃→	, 
=V2 / t̃
finite�, the occupation numbers become

�n�	 =



2�



−	

	 fL��� + fR���
�� − �d − U�n−�	�2 + 
2d� , �7�

which simplifies further for zero temperature as

�n�	 = �
���L,R�

1

2�
cot−1�d + U�n−�	 − ��



� . �8�

These self-consistent equations can also be obtained using
the Keldysh formalism.10 Equation �7� or �8� is solved itera-
tively by assuming that the applied bias is symmetrical,
�L=� /2 and �R=−� /2. In these calculations, the bias volt-

age is increased or decreased gradually and the local stability
of the solutions is always checked.

First, let us discuss the bias dependence of the occupation
numbers at T=0. In the inset of Fig. 1, the magnetization
m= �n↑	− �n↓	 is plotted both for increasing and decreasing
bias voltages at a fixed ratio of 
 /U=0.05 for the symmetric
Anderson model ��d /U=−0.5�. In equilibrium, at zero bias,
the impurity possesses a finite magnetic moment for the
chosen parameter set, while in case of high bias voltages
���0.5�, the stable solution is paramagnetic. Between the
two limiting cases, a region appears, �c1����c2, where
both the magnetic and the nonmagnetic solutions are stable.
We shall refer to this region as a coexistence region. The
existence of multiple stable solutions for the occupation
numbers in this region is reflected in the hysteresis of the
magnetization too. The sharp decay of the magnetization
shown in the inset of Fig. 1 and the existence of a hysteresis
between the critical fields indicate clearly a first order tran-
sition, predicted incorrectly by the MF solution.

The parameter space can thus be divided into magnetic
�M�, paramagnetic �P�, and coexistence �C� regions. In the
paramagnetic regions, a single stable solution exists only
��n↑	= �n↓	�, while in the magnetic one, two stable magnetic
�corresponding to magnetizations �m� and one unstable
paramagnetic solutions can be found. In the coexistence re-
gion, two magnetic and one paramagnetic stable solutions
and two unstable magnetic solutions exist. Therefore, these
regions can be distinguished by the number of the solutions
of Eq. �8�. In the symmetric case, when �n↑	+ �n↓	=1, the
easiest way to construct a “phase diagram” is to sweep pos-
sible values of �n↑	− �n↓	 pairs, substitute them into Eq. �8�,
and count the number of solutions for different parameter
sets.

In the paramagnetic region, one can exploit the fact that
Eq. �8� has a nonmagnetic solution for every possible param-
eter set. Therefore, one can substitute �n↑	= �n↓	 into Eq. �8�
and search only for nonmagnetic states. The region of stabil-
ity for this solution can then be determined through a linear
stability analysis.10,13

Figure 1 shows a typical magnetic ‘‘phase diagram’’ as a
function of � /U and 
 /U for the symmetric nonequilibrium
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FIG. 1. Magnetic �M�, coexistence �C�, and paramagnetic �P�
regions as a function of � /U and 
 /U values for �d /U=−1 /2. The
boundaries of the regions obtained by increasing and decreasing
bias are plotted with solid and dashed lines, respectively. The ex-
actly evaluated boundary curve is indicated by squares. Inset: mag-
netization as a function of increasing and decreasing bias voltages
for 
 /U=0.05 �along the dotted line in the main figure�.
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AIM at T=0. At the “upper critical line” �c2, the magnetic
solution becomes unstable. In the magnetic case, the effec-
tive levels corresponding to different spins are not equally
occupied and lie at different energies. The magnetic solution
becomes unstable when the value of the bias voltage reaches
approximately the effective energy of one of the two differ-
ently occupied levels.

The critical line �c1 in Fig. 1 marks, on the other hand,
the border of stable paramagnetic solutions. In the special
case, �d=−U /2, the two spin occupations are �n↑,↓	=0.5 in
the whole paramagnetic region, and the magnetic boundary
equation simplifies to �2+16
2−8U
 /�=0. This analytical
result is nicely reproduced by our numerical stability analy-
sis �see Fig. 1�.

The values of �c1 and �c2 are functions of 
 /U and �d /U;
for increasing 
 /U, the coexistence and magnetic regions
disappear and only the nonmagnetic solution survives. In
Fig. 2, the ‘‘phase diagrams’’ can be seen as a function of
� /U and 
 /U at T=0. Depending on the value of �d, we can
distinguish four different regions: empty regime ��d�0�,
mixed valence regime ��d�0�, local moment regime
�−U��d�0�, and a doubly occupied regime ��d�−U�
which behaves similarly to the empty regime by particle-hole
symmetry.

In the local moment regime, shown in Figs. 1 and 2�a�, for
�d�−U /2, there is approximately one electron on the impu-
rity forming a local spin moment. In equilibrium, this finite
magnetic moment is predicted on the dot below a critical
value of 
 /U, and this moment is destroyed by a large
enough bias voltage. The coexistence region only appears in
this local moment regime and vanishes above �d�−U /4 �see
Fig. 2�b��.

In the empty regime ��d�0�, shown in Figs. 2�c� and
2�d�, the equilibrium magnetization completely disappears.
However, surprisingly, the MF solution predicts the appear-
ance of local moments for small 
 and 2�d���2�d+U
biases. This intriguing local moment formation has a
simple physical meaning: For large values of U /
 and
2�d���2�d+U, the bias voltages are large enough to in-
ject an electron to the empty level; however, they are not
large enough to overcome the Coulomb energy of injecting a
second electron to the local level. Therefore, electrons pass

through the dot one by one, and a fluctuating magnetic mo-
ment appears on the dot. Note that in this regime, the mag-
netization is induced exclusively by the finite bias voltage.

The overall effect of the temperature in the applied MF
approximation is to destroy the magnetic moment on the
impurity and drive the system to be paramagnetic. Figure 3
shows the temperature dependence of the ‘‘phase diagram’’
in the symmetric case. The coexistence region gradually van-
ishes for increasing temperatures, while the magnetic and
paramagnetic regions get larger. Increasing the temperatures
further, the magnetic region disappears too.

The previous results are summarized in Fig. 4 for a fixed
ratio 
 /U=0.05 that is already sufficiently small to find
the coexistence and magnetic regions in the local moment
regime. The whole ‘‘phase diagram’’ is symmetric to
�d /U=−0.5 due to the electron-hole symmetry. Note that the
coexistence region only exists close to the electron-hole
symmetric point, �d /U�−0.5. For large asymmetries
�double or zero equilibrium occupation�, a nonequilibrium
magnetic solution appears, while in equilibrium, only the
paramagnetic solution exists. This magnetic region has also
been observed although not discussed in detail in Ref. 10.

The mean-field solution also leads to the appearance of
nonphysical features in the transport properties of the impu-
rity. We calculated the transport properties within the MF
approximation using the Landauer-Büttiker formalism14 but
similar results can be obtained applying the Keldysh
formalism.13 The current can be evaluated as
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FIG. 2. ‘‘Phase diagrams’’ as a function of � /U and 
 /U for
T=0 and different �d values: �d /U= �a� −0.35, �b� −0.25, �c� 0, and
�d� 0.25. Notations of the regions are the same as in Fig. 1. The
increasing and decreasing bias voltages are denoted by dashed and
dotted lines, respectively.
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I� �
e

h



−	

	

d��fL��� − fR�����t�����2. �9�

Here, the transmission coefficient t�=��vk� /vk is normal-
ized to the flux, with vk and vk� the velocities of incident and
transmitted electrons with wave numbers k and k�. Applying
the large bandwidth approximation again, the current can be
written for finite temperatures as

I� =
e

2��



−	

	

d�

2�fL��� − fR����

�� − �d − U�n−�	�2 + 
2 , �10�

with �n�	 the nonequilibrium occupation numbers obtained
from Eq. �7�. This integral can be trivially evaluated at
T=0 temperature.

Figure 5 shows the current as a function of bias for two
different level positions in the strongly correlated regime.
For �d /U=−0.5, we find hysteresis in the current. For

�d /U=0.25, on the other hand, no hysteresis appears but the
current shows a two-step behavior as a function of bias volt-
age. In this empty regime, the MF equations thus account
qualitatively correctly for the charging of the local level, but
the kinks appearing in the I�� /U� curve are due to the incor-
rectly predicted symmetry breaking and are thus again arti-
facts of the MF solution.

In the inset of Fig. 5, we have plotted the polarization of
the current, PI��I↑− I↓� / �I↑+ I↓�, as a function of �. In the
symmetric case, the current is not polarized due to the
electron-hole symmetry, but for small electron-hole asymme-
tries, a hysteresis appears in the polarization too. In general,
the polarization is finite whenever a local moment appears on
the impurity, and there is no electron-hole symmetry.

To conclude, we have studied the out-of-equilibrium
Anderson model in the framework of the scattering formal-
ism combined with a mean-field approximation. This
method, frequently used in molecular transport calculations,
incorrectly predicts a magnetic phase transition as well as a
bias-induced magnetic moment formation, accompanied by
hysteresis in various physical quantities and the coexistence
of multiple solutions. The MF approach thus fails whenever
correlations become important. These artifacts of the mean-
field approach should alert physicists who study transport
through strongly correlated and magnetic molecules and urge
one to use more sophisticated methods that avoid spontane-
ous symmetry breaking and account for dynamical effects.
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FIG. 5. The current as a function of the bias voltage for �d /U
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moment regime. Inset: the polarization of the current for �d /U=
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